$a=14.685(2) \AA$
$b=8.679$ (3) \AA
$c=17.769$ (3) \AA
$\beta=111.75(1)^{\circ}$
$V=2103.4(7) \AA^{3}$
$Z=4$
$\theta=11.2-12.3^{\circ}$
$\mu=0.112 \mathrm{~mm}^{-1}$
$T=289.2 \mathrm{~K}$
Prism
$0.25 \times 0.20 \times 0.20 \mathrm{~mm}$
Colourless
$D_{x}=1.408 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=1.406 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} measured by flotation
in KI

Data collection

Rigaku AFC-5R diffractom-

$$
R_{\mathrm{int}}=0.035
$$

eter
$\omega / 2 \theta$ scans
Absorption correction: none
4149 measured reflections
3986 independent reflections 2187 reflections with
$I>2 \sigma(I)$
$\theta_{\text {max }}=25^{\circ}$
$h=0 \rightarrow 17$
$k=0 \rightarrow 10$
$l=-21 \rightarrow 19$
3 standard reflections every 150 reflections
intensity decay: -0.55%

Refinement

Refinement on F
$R=0.085$
$w R=0.052$
$S=1.341$
2187 reflections
258 parameters
H atoms not refined
Weighting scheme based
on measured s.u.'s
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.37 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.42 \mathrm{e}^{-3}$
Extinction correction:
Zachariasen type 2
Gaussian isotropic
Extinction coefficient: 3.138×10^{-6}
Scattering factors from International Tables for X-ray Crystallography (Vol. IV)

Table 3. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$ for (3)

$\mathrm{O}(1)-\mathrm{C}(7)$	$1.412(6)$	$\mathrm{C}(1)-\mathrm{C}(7)$	$1.503(6)$
$\mathrm{O}(1)-\mathrm{B}(1)$	$1.426(7)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.550(7)$
$\mathrm{O}(2)-\mathrm{C}(18)$	$1.411(6)$	$\mathrm{C}(7)-\mathrm{C}(19)$	$1.579(7)$
$\mathrm{O}(2)-\mathrm{B}(2)$	$1.422(9)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.482(6)$
$\mathrm{N}(1)-\mathrm{C}(9)$	$1.274(7)$	$\mathrm{C}(8)-\mathrm{C}(18)$	$1.581(7)$
$\mathrm{N}(1)-\mathrm{B}(1)$	$1.591(7)$	$\mathrm{C}(12)-\mathrm{C}(18)$	$1.518(7)$
$\mathrm{N}(2)-\mathrm{C}(20)$	$1.291(7)$	$\mathrm{C}(18)-\mathrm{C}(19)$	$1.548(7)$
$\mathrm{N}(2)-\mathrm{B}(2)$	$1.602(8)$	$\mathrm{C}(19)-\mathrm{C}(20)$	$1.489(7)$
$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	$110.9(4)$	$\mathrm{O}(2)-\mathrm{C}(18)-\mathrm{C}(8)$	$108.7(5)$
$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{C}(19)$	$108.1(5)$	$\mathrm{O}(2)-\mathrm{C}(18)-\mathrm{C}(19)$	$111.6(5)$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(19)$	$86.9(4)$	$\mathrm{C}(8)-\mathrm{C}(18)-\mathrm{C}(19)$	$86.9(4)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$119.1(5)$	$\mathrm{C}(7)-\mathrm{C}(19)-\mathrm{C}(18)$	$91.1(4)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(18)$	$91.0(4)$	$\mathrm{C}(7)-\mathrm{C}(19)-\mathrm{C}(20)$	$113.4(4)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(18)$	$117.2(5)$	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	$119.3(5)$

Date collection and cell refinement for all complexes: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988). Programs used to solve structure: SIR88 (Burla et al., 1989) for (1) and (2), SAPI91 (Fan, 1991) for (3). Programs used to refine structure: DIRDIF92 (Beurskens et al., 1992) for (1) and (3), DIRDIF94 (Beurskens et al., 1994) for (2) and TEXSAN (Molecular Structure Corporation, 1992) for all complexes. Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: TEXSAN.

[^0]
References

Bertolasi, V., Gilli, P., Ferretti, V. \& Gilli, G. (1991). J. Am. Chem. Soc. 113, 4917-4929.
Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., GarciaGranda, S., Gould, R. O., Smits, J. M. M. \& Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.
Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., de Gelder, R., Israel, R. \& Smits, J. M. M. (1994). The DIRDIF94 Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.
Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Polidori, G., Spagna, R. \& Viterbo, D. (1989). J. Appl. Cryst. 22, 389-393.

Fan, H.-F. (1991). SAPI91. Structure Analysis Programs with Intelligent Control. Rigaku Corporation, Tokyo, Japan.
Itoh, K., Okazaki, K., Sera, A. \& Chow, Y. L. (1992). J. Chem. Soc. Chem. Commun. pp. 1608-1609.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 7738I, USA.
Molecular Structure Corporation (1992). TEXSAN. TEXRAY Structure Analysis Package. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Olivieri, A. C., Sanz, D., Claramunt, R. M. \& Elguero, J. (1993). J. Chem. Soc. Perkin Trans. 2, pp. 1597-1601.
Silvea, M. A. V. R. \& Ferrao, M. L. C. C. H. (1988). Pure Appl. Chem. 60, 1597-1599.
Singh, Y. P., Rupani, P., Rai, A. K., Mehrotra, R. C., Rogers, R. D. \& Atwood, J. L. (1986). Inorg. Chem. 25, 3076-3081.
Tokutomi, T. \& Hayashi, T. (1977). Nippon Kagaku Kaishi, pp. 13381343.

Acta Cryst. (1998). C54, 1327-1329

7-Methyl-3,7,11,17-tetraazabicyclo[11.3.1]-heptadeca-1(17),13,15-triene

Jonathan P. Corden, William Errington, Peter
Moore and Malcolm G. H. Wallbridge

Department of Chemistry, University of Warwick, Coventry CV4 7AL, England. E-mail: w.errington@warwick.ac.uk
(Received 12 January 1998; accepted 23 March 1998)

Abstract

The title compound, $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{~N}_{4}$, is known to act as a macrocyclic ligand and its conformation has been determined to facilitate future comparisons with its coordinated forms. The aliphatic macrocyclic strand is disordered with respect to a mirror plane perpendicular to the pyridine ring and contains an ordered tertiary

N atom; the four donor N atoms are approximately coplanar.

Comment

The title compound, (I), is known to act as a tetraaza macrocyclic ligand (L) towards several transition metal ions. For example, with nickel(II), it forms $[\mathrm{Ni}(L)]-$ $\left(\mathrm{ClO}_{4}\right)_{2}$, with the coordination about the metal centre being approximately square planar (Alcock et al., 1986). Compounds such as (I) are sufficiently flexible to vary their mode of coordination, and we have therefore determined its crystal structure in order to compare its conformation with those found in metal complexes. The structure of the related ligand β-2,12-dimethyl-3,7,11,17-tetraazabicyclo[11.3.1]heptadeca-1(17),13,15-triene has also been reported (Drew et al., 1986), but this has methyl groups on two C atoms of the macrocyclic ring and not on a donor N atom as in (I).

(I)

The molecular structure of (I) is represented in Fig. 1. Bond lengths and angles are unexceptional but confirm the bond orders given in the scheme above.

Fig. 1. View of the title molecule showing the atomic numbering. Displacement ellipsoids are drawn at the 30% probability level.

The pyridine ring is planar (r.m.s. deviation $0.004 \AA$) and the four N atoms are approximately coplanar (r.m.s. deviation $0.04 \AA$). The angle between these two planes is $47.4(1)^{\circ}$, which can be compared with a value of 49.2° in the related macrocycle (Drew et al., 1986) with methyl groups at C 4 and $\mathrm{C} 4^{\prime}$, but not at N3 (as labelled in Fig. 1). Atoms C1, N1 and N3 are located on the mirror plane (i.e. $y=\frac{1}{4}$), and the complete molecule is generated from the asymmetric unit by reflection across this plane. The ring segment from C6 to C 10 via N 3 (and including C 8) is disordered and the alternative positions (not shown in Fig. 1) are generated by reflection across the mirror plane.

The macrocycle is folded in such a way that all atoms with the exception of C 4 and C 8 (and their symmetry equivalents) are on the same side of the N_{4} plane. The NH protons were fitted from an electron-density map and point inwards, thus implying that the NH lone pairs point away from the macrocyclic cavity. The separations between adjacent N atoms in the N_{4} plane are N1 $\cdots \mathrm{N} 22.849(2)$ and $\mathrm{N} 2 \cdots \mathrm{~N} 33.238(2) \AA$; the trans separations are much greater at N1 $\cdots \mathrm{N} 33.928$ (3) and $\mathrm{N} 2 \cdots \mathrm{~N} 2^{i} 4.624$ (3) \AA [symmetry code: (i) $x, \frac{1}{2}-y$, z]. There is no evidence of either inter- or intramolecular hydrogen bonding; the shortest potential hydrogen-bond interaction involves atoms N 2 and N 3 at a separation of 3.238(2) \AA ($c f$. the sum of the van der Waals radii of $3.10 \AA$).

Experimental

To a stirred solution of freshly prepared 2,6-pyridinecarbaldehyde ($9.81 \mathrm{~g}, 72.7 \mathrm{mmol}$) in ethanol (150 ml) was added a solution of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} .4 \mathrm{H}_{2} \mathrm{O}(17.56 \mathrm{~g}, 72.7 \mathrm{mmol})$ in water $(150 \mathrm{ml})$. To the resulting pale-green solution was added dropwise, with stirring, a solution of 1,7-diamino-4-methyl4 -azaheptane ($9.54 \mathrm{~g}, 72.7 \mathrm{mmol}$) in ethanol (30 ml). The resulting deep-blue solution was stirred while heating under reflux for 2 h , during which time an intense violet colour developed. The solution was then placed under a dry nitrogen atmosphere and cooled to 278 K . Sodium tetrahydroborate ($7 \mathrm{~g}, 184.2 \mathrm{mmol}$) was added in small portions over a period of 30 min . The solution was stirred at room temperature for 30 min , and then heated to reflux for a further 30 min , before being left to stir overnight at room temperature. The copper was removed by treating the mixture with $\mathrm{Na}_{2} \mathrm{~S} .9 \mathrm{H}_{2} \mathrm{O}$ ($40 \mathrm{~g}, 167 \mathrm{mmol}$) followed by heating to reflux for 30 min . The solution was then cooled and the black copper sulfide was removed by filtration through a bed of Celite. The filtrate was extracted with dichloromethane ($7 \times 200 \mathrm{ml}$), the combined extracts dried with anhydrous MgSO_{4}, and the dichloromethane removed by evaporation to leave an orangewhite gel. The pure ligand was obtained by sublimation of the gel.

Crystal data
$\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{~N}_{4}$

$$
\text { Mo } K \alpha \text { radiation }
$$

$M_{r}=248.37$

Orthorhombic
Pnma
$a=15.3046(10) \AA$
$b=14.5739(10) \AA$
$c=6.4175$ (6) \AA
$V=1431.41(19) \AA^{3}$
$Z=4$
$D_{x}=1.153 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens SMART CCD areadetector diffractometer ω scans
Absorption correction: none 3319 measured reflections 1327 independent reflections

Cell parameters from 2239 reflections
$\theta=2.66-25.49^{\circ}$
$\mu=0.071 \mathrm{~mm}^{-1}$
$T=180$ (2) K
Needle
$0.23 \times 0.09 \times 0.06 \mathrm{~mm}$ Colourless

1043 reflections with
$I>2 \sigma(I)$
$R_{\text {int }}=0.044$
$\theta_{\text {max }}=25.49^{\circ}$
$h=-16 \rightarrow 17$
$k=-6 \rightarrow 17$
$l=-7 \rightarrow 7$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.122$
$S=1.162$
1327 reflections
114 parameters
H atoms riding
$\begin{aligned} & w= 1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0373 P)^{2}\right. \\ &+0.3663 P] \\ & \text { where } P=\left(F^{2}+2 F^{2}\right) / 3\end{aligned}$
$(\Delta / \sigma)_{\text {max }}=0.004$
$\Delta \rho_{\text {IIax }}=0.141 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.181 \mathrm{e} \mathrm{A}^{-3}$
Extinction correction: none Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\mathrm{cq}}=(1 / 3) \Sigma_{i} \Sigma_{j} U^{i j} a^{i} a^{j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
N1	0.29389 (12)	1/4	0.0318 (3)	0.0377 (5)
N2	0.20591 (11)	0.40863 (10)	0.1844 (2)	0.0533 (5)
N3	0.07865 (13)	1/4	0.3651 (3)	0.0481 (6)
Cl	0.32440 (17)	1/4	-0.3924 (4)	0.0501 (7)
C2	0.31645 (11)	0.33153 (12)	-0.2853 (3)	0.0454 (5)
C3	0.30072 (10)	0.32915 (10)	-0.0728 (2)	0.0383 (4)
C4	0.28524 (12)	0.41379 (11)	0.0589 (3)	0.0497 (5)
C5	$0.127(1)$ (13)	0.40163 (13)	0.0595 (3)	0.0613 (6)
C6 \dagger	0.0365 (8)	0.3963 (9)	0.1530 (16)	0.058 (2)
C7t	0.0142 (2)	0.2992 (3)	0.2239 (6)	0.0537 (9)
C8 \dagger	0.0834 (3)	0.3061 (3)	0.5638 (6)	0.0643 (11)
C9 \dagger	0.0558 (2)	0.1602 (3)	0.4108 (6)	0.0551 (10)
C10†	0.0526 (8)	0.0970 (9)	0.2241 (14)	0.059 (2)

\dagger Site occupancy $=0.50$.

References

Alcock, N. W., Moore, P. \& Omar, H. A. A. (1986). J. Chem. Soc. Dalton Trans. pp. 985-989.
Allen, F. H. \& Kennard, O. (1993). Chem. Des. Autom. News, 8, 31-37.
Cosier, J. \& Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
Drew, M. G. B., Rice, D. A., bin Silong, S. \& Yates, P. C. (1986). J. Chem. Soc. Dalton Trans. pp. 1081-1086.
Fletcher, D. A., McMeeking, R. F. \& Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746-749.
Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Siemens (1994a). SHELXTLIPC Reference Manual. Version 5.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1994b). SMART Software Reference Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1995). SAINT Software Reference Manual. Version 4. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Table 2. Selected torsion angles $\left({ }^{\circ}\right)$

| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$ | $-176.08(18)$ | $\mathrm{C} 9-\mathrm{N} 3-\mathrm{C} 7-\mathrm{C} 6$ | $-176.1(6)$ |
| :--- | :---: | :--- | ---: | ---: |
| $\mathrm{C} 5-\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 3$ | $-62.53(19)$ | $\mathrm{C} 8-\mathrm{N} 3-\mathrm{C} 7-\mathrm{C} 6$ | $62.5(6)$ |
| $\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 2$ | $-49.1(2)$ | $\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{N} 3$ | $51.6(7)$ |
| $\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 2$ | $127.94(18)$ | $\mathrm{C} 8-\mathrm{N} 3-\mathrm{C} 9-\mathrm{C} 10$ | $-177.7(6)$ |
| $\mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 5-\mathrm{C} 6$ | $-179.4(6)$ | $\mathrm{C} 7-\mathrm{N} 3-\mathrm{C} 9-\mathrm{C} 10$ | $63.1(6)$ |
| $\mathrm{C} 4^{i}-\mathrm{N} 2^{i}-\mathrm{C} 5^{1}-\mathrm{C} 10$ | $176.8(5)$ | $\mathrm{N} 3-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 5^{1}$ | $45.3(9)$ |
| $\mathrm{N} 2-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$ | $-81.4(6)$ | $\mathrm{C} 9-\mathrm{C} 10-\mathrm{C}^{-1}-\mathrm{N} 2^{1}$ | $49.9(8)$ |

Symmetry code: (i) $x, \frac{1}{2}-y, z$.

[^0]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: DE1049). Services for accessing these data are described at the back of the journal.

